Abstract
To test agent and cell-type specificity in insulin resistance induced by prolonged exposure to HIV protease inhibitors (HPI), and to assess its relation to the direct, short-term inhibition of insulin-stimulated glucose uptake. Following prolonged (18 h) and short (5-10 min) exposure to HPI, insulin-stimulated glucose transport, protein kinase B (PKB) phosphorylation, and GLUT4 translocation were evaluated in 3T3-L1 adipocytes, fibroblasts, L6 myotubes, and L6 cells overexpressing a myc tag on the first exofacial loop of GLUT4 or GLUT1. Prolonged exposure of 3T3-L1 adipocytes to nelfinavir, but not to indinavir or saquinavir, resulted in increased basal lipolysis but decreased insulin-stimulated glucose transport and PKB phosphorylation. In addition, impaired insulin-stimulated glucose uptake and PKB phosphorylation were also observed in the skeletal muscle cell line L6, and in 3T3-L1 fibroblasts. Interestingly, this coincided with increased basal glucose uptake as well as with elevated total-membrane glucose transporter GLUT1 protein content. In contrast to these unique effects of nelfinavir, the mere presence of any of the agents in the 5 min transport assay inhibited insulin-stimulated glucose-uptake activity. This appeared to be caused by direct and specific interaction of the drugs with GLUT4 fully assembled at the plasma membrane, since insulin-stimulated cell-surface exposure of an exofacial myc epitope on GLUT4 was normal. Independent mechanisms for HPI-induced insulin resistance exist: prolonged exposure to nelfinavir interferes with insulin signaling and alters cellular metabolism of adipocytes and muscle cells, whereas a direct inhibitory effect on insulin-stimulated glucose uptake may occurs through specific interaction of HPI with GLUT4.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.