Abstract
The San Joaquin Basin is a major petroleum province that forms the southern half of California’s Great Valley, a 700-km-long, asymmetrical basin that originated between a subduction zone to the west and the Sierra Nevada to the east. Sedimentary fill and tectonic structures of the San Joaquin Basin record the Mesozoic through Cenozoic geologic history of North America’s western margin. More than 25,000 feet (>7,500 meters) of sedimentary rocks overlie the basement surface and provide a nearly continuous record of sedimentation over the past ~100 m.y. Further, depositional geometries and fault structures document the tectonic evolution of the region from forearc setting to strike-slip basin to transpressional margin. Sedimentary architecture in the San Joaquin Basin is complicated because of these tectonic regimes and because of lateral changes in depositional environment and temporal changes in relative sea level. Few formations are widespread across the basin. Consequently, a careful analysis of sedimentary facies is required to unravel the basin’s depositional history on a regional scale. At least three high-quality organic source rocks formed in the San Joaquin Basin during periods of sea level transgression and anoxia. Generated on the basin’s west side, hydrocarbons migrated into nearly every facies type in the basin, from shelf and submarine fan sands to diatomite and shale to nonmarine coarse-grained rocks to schist. In 2003, the U.S. Geological Survey (USGS) completed a geologic assessment of undiscovered oil and gas resources and future additions to reserves in the San Joaquin Valley of California (USGS San Joaquin Basin Province Assessment Team, this volume, chapter 1). Several research aims supported this assessment: identifying and mapping the petroleum systems, modeling the generation, migration, and accumulation of hydrocarbons, and defining the volumes of rock to be analyzed for additional resources. To better understand the three dimensional relationships between hydrocarbon source and reservoir rocks, we compiled a database consisting of more than 13,000 well picks and of one-mile resolution seismic grids. Both the well picks and the seismic grids characterize the depths to the top of key stratigraphic units. This database formed the basis of subsequent numerical modeling efforts, including the construction of a three- dimensional geologic model (Hosford Scheirer, this volume, chapter 7) and simulation of the petroleum systems in space and time (Peters, Magoon, Lampe, and others, this volume, chapter 12). To accomplish this modeling, we synthesized the age, geographic distribution, lithology, and petroleum characteristics of hydrocarbon source and reservoir rocks in the basin. The results of that synthesis are presented in this paper in the form of new stratigraphic correlation columns for the northern, central, and southern San Joaquin Valley (fig. 5.1; note that all figures are at the back of this report, following the References Cited). The stratigraphic relationships and ages published here draw heavily on published and unpublished studies of the San Joaquin Basin. The stratigraphy presented in each of the columns necessarily idealizes the subsurface geology over a relatively large area, instead of representing the specific geology at an individual well, oil and gas field, or outcrop. In this paper we present the background rationale for defining the geographic divisions of the basin (inset map, fig. 5.1), the paleontological time scales used for assigning absolute ages to rock units (figs. 5.2 and 5.3), and the supporting maps illustrating the geographic distribution of each rock type included in the stratigraphic column (figs. 5.4 through 5.64).
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.