Abstract
Abstract The Upper Scorpius OB association is the nearest region of recent massive star formation and thus an important benchmark for investigations concerning stellar evolution and planet formation timescales. We present nine eclipsing binaries (EBs) in Upper Scorpius, three of which are newly reported here and all of which were discovered from K2 photometry. Joint fitting of the eclipse photometry and radial velocities from newly acquired Keck I/HIRES spectra yields precise masses and radii for those systems that are spectroscopically double-lined. The binary orbital periods in our sample range from 0.6 to 100 days, with total masses ranging from 0.2 to 8 M ⊙. At least 33% of the EBs reside in hierarchical multiples, including two triples and one quadruple. We use these EBs to develop an empirical mass–radius relation for pre-main-sequence stars and evaluate the predictions of widely used stellar evolutionary models. We report evidence for an age of 5–7 Myr, which is self-consistent in the mass range of 0.3–5 M ⊙ and based on the fundamentally determined masses and radii of EBs. Evolutionary models including the effects of magnetic fields imply an age of 9–10 Myr. Our results are consistent with previous studies that indicate that many models systematically underestimate the masses of low-mass stars by 20%–60% based on Hertzsprung–Russell diagram analyses. We also consider the dynamical states of several binaries and compare with expectations from tidal dissipation theories. Finally, we identify RIK 72 b as a long-period transiting brown dwarf (M = 59.2 ± 6.8 M Jup, R = 3.10 ± 0.31 R Jup, P ≈ 97.8 days) and an ideal benchmark for brown dwarf cooling models at 5–10 Myr.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.