Abstract

Complex investigations of cytochrome P450 (CYP) isoforms with metabolic syndrome (MS) development are limited, and specific features of adolescent's metabolisms are generally disregarded. The aim of present study was a comparative estimation of MS-mediated changes in CYP3A, CYP2C, and CYP2E1 mRNA expression and enzymatic activities, as well as antioxidant system parameters of adult and pubertal rats. Wistar albino male rats of two age categories [young animals of 21 days age (50-70 g) and adults (160-180 g)] were divided into four groups (eight animals in each group): (1) control 1 (intact young rats), (2) control 2 (intact adult rats), (3) MS3 (young rats with MS), and (4) MS4 (adult rats with MS). The MS was induced by full replacement of drinking water by 20% fructose solution (200 g/L). After 60 days of MS modeling, the investigation of rat liver CYP3A, CYP2C, and CYP2E1 mRNA expressions, their enzyme-marker activities, as well as the antioxidant system parameters was conducted. Levels of liver CYP2E1 mRNA expression increased with MS: 40% (adults) and 80% (pubertal rats). Pubertal rats had also increased CYP3A2 mRNA expression (30%) and decreased CYP2C mRNA expression (30%). Changes in CYP2E1 and CYP2C enzymatic activities were consistent with the changes of corresponding gene expressions at both age-groups with MS. Simultaneously, liver reduced glutathione contents, and glutathione transferase and reductase activities were decreased in pubertal animals. CYP isoform expression rates and glutathione system were greatly violated with MS. The greater changes were observed in pubertal rats with MS.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.