Abstract

In female mammals, reproductive senescence is a complex process involving progressive ovarian dysfunction, associated with altered central control of the hypothalamic-pituitary-gonadal axis and desynchronization of the circadian system. The objective of this study was to investigate age-dependent changes in the daily regulation of Arg-Phe amide-related peptide-3 (RFRP-3), a hypothalamic peptide involved in reproduction, in female C57BL/6 J mice of different age groups (4, 13, and 19 months old) sampled at their diestrus stage. We found an age-dependent decrease in the total number of RFRP-3 neurons and in the relative number of activated (i.e. c-Fos-positive) RFRP-3 neurons. RFRP-3 neuronal activation exhibited a daily variation in young and middle-aged mice, which was abolished in 19-month-old mice. We also found a daily variation in the number of RFRP-3 neurons receiving close vasopressin (AVP)- and vasoactive intestinal peptide (VIP)-ergic fiber appositions in mice aged 4 and 13 months, but not in 19-month-old mice. However, we found no daily or age-dependent changes in the AVP and VIP fiber density in the dorsomedial hypothalamus. Plasma LH levels were similar in mice aged 4 and 13 months, but were markedly increased in 19-month-old mice. The present findings indicate that the number of RFRP-3 positive neurons is downregulated during old age and that the daily changes in their innervation by the circadian peptides AVP and VIP are abolished. This age-associated reduced (rhythmic) activity of the inhibitory RFRP-3 system could be implicated in the elevated LH secretion observed during reproductive senescence.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.