Abstract
Neoproterozoic volcanics and granitoids formed at Rodinia margins within a time span of 880Ma–700Ma, are well-documented in many terranes of the southern Central Asian Orogenic Belt (CAOB). Ages younger than 550Ma corresponding to the opening of the Terskey Ocean are also common. However, so far, there were very few published ages in the range 700Ma–550Ma from the Kyrgyz Tien Shan. In this paper we present new data for the alkaline Chon-Ashu complex emplaced at the end of the Cryogenian Period of the Neoproterozoic (850–635Ma, Gradstein et al., 2012). The alkaline complex intrudes the Precambrian metamorphic rocks north of the Nikolaev Line which separates the Northern and Middle Tien Shan terranes in the eastern Kyrgyzstan. The undeformed shallow level alkaline rocks range from olivine gabbro to nepheline and cancrinite syenites and leucosyenites. The differentiated rock assemblage can be explained by fractional crystallization of high-silica mineral phases which drives nepheline-normative melts away from the silica saturation boundary. The alkaline rocks of Chon-Ashu are enriched in LILE and HFSE indicative of their origin from lithospheric mantle. An age of 678±9Ma (U–Pb, SHRIMP) was obtained for a protolith of country gneiss, and an age of 656±4Ma was obtained for the crosscutting alkaline rocks of the Chon-Ashu complex. Seven zircon grains recovered from gneiss and alkaline rocks had bright overgrown rims which yielded a cumulative age of 400±8Ma. A metamorphic event, followed by uplift and emplacement of shallow level alkaline complex, constrains the geodynamic setting. Alkaline rocks usually form in an extensional setting and originate from lithospheric mantle. The 690Ma xenoliths of mafic granulite from the NW Tarim have been interpreted to originate by mafic underplating. This mafic underplating may have been responsible for metamorphism in the middle crust prior to emplacement of the Chon-Ashu complex. The 670Ma–630Ma period of extension and emplacement of enriched alkaline rocks can be also traced on a regional scale through southern Kazakhstan and the northern Tarim. We tentatively interpret these events as a result of mafic underplating and subsequent rifting related to the break-up of Rodinia. During field work at Chon-Ashu, rich chalcopyrite mineralization has been discovered in carbonate veinlets in leucosyenite alkaline dikes and has also been found in the adjacent Cambrian gabbro and granites shown on the map as undivided Devonian–Silurian. Stockwork mineralization predominates though disseminated mineralization is also present. The Cu content reaches 16,184ppm and is associated with elevated concentrations of Pb, Zn and Ag. The polyphase structural evolution of the area suggests that mineralization could have formed in several genetically unrelated stages. Based on structural and mineralogical evidence we tentatively relate the earliest stage of chalcopyrite mineralization to the late magmatic CO2-rich fluids emanating from the Cryogenian alkaline complex. The Early Devonian thermal event registered by growth of new zircon at 400Ma has important metallogenic implications on a regional scale. However the origin of two zones of alteration in the undivided Silurian–Devonian granites is ambiguous because their age was not determined geochronologically. The 522±4Ma Cambrian gabbro of the Tashtambektor Formation is strongly foliated along the splays of the Nikolaev Line, indicating a Hercynian origin of the fabric. Superimposed mineralized stockwork postdates the foliation and suggests a late-Hercynian age of mineralization in gabbro. The new data enable a reassessment of the metallogenic potential of the Eastern Kyrgyz Tien Shan. Presence of not eroded high-level mineralized Neoproterozoic alkaline intrusions points to a previously underestimated metallogenic potential of pre-Hercynian granitoids which may host preserved porphyry systems, skarns and shear-related mineralization. Finally, the Devonian magmato-metamorphic event which caused formation of a number of ore deposits in central Kyrgyzstan and Kazakhstan could also create potential exploration targets in eastern Kyrgyzstan.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.