Abstract

An electrochemical sensor based on loading molecularly imprinted polymers (MIP) on the material surface can improve the specificity towards the object. In this work, a T-shaped PbTiO3 with a high active-exposed (110) facet was prepared by a hydrothermal process. Then, Ag nanoparticles (Ag NPs) modified T-shaped PbTiO3 was obtained by in-situ photocatalytic reduced method under UV irradiation, where a hetero-junction was formed with a well lattice matching between the (111) facet of Ag0 and the (110) facet of PbTiO3. A MIPs modified by Ag nanoparticles (NPs)/PbTiO3 (MAP) electrodes was prepared via electro polymerization process by o-Phenylenediamine (o-PD) in the presence of the template molecule, bovine hemoglobin (BHb), i.e., the detected molecule. The response peak current and concentration of BHb is demonstrated with a good linear relationship in the range of 0.00294–0.41 nM (R2 =0.98), and the detection limit at 0.23 pM (S/N = 3). A heterojunction between Ag NPs and high- active facet of PbTiO3 is beneficial to oxidizing electroactive material ([Fe (CN)6]3-/4-), generating more BHb-imprinting cavities on the modified electrode and improving the sensitivity of sensor. The electrochemical sensor is with a simple, stable structure and high sensitivity to BHb detection. Furthermore, the sensor was successfully applied to detect BHb in the bovine serum samples.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.