Abstract

The effect of adding Ag to CuO-ZrO2 catalysts for the hydrogenation of CO2 to methanol was investigated using CuO-ZrO2, Ag/CuO-ZrO2, and Ag/ZrO2. The addition of Ag to CuO-ZrO2 catalysts decreased the specific surface area and also broke its mesostructure. Thus, Ag played a significant role as a sintering aid in the preparation of Ag/CuO-ZrO2 catalysts. We note that the as-prepared Ag/CuO-ZrO2 catalysts contained Ag+ and Zrq+ (q<4) sites and that the Zrq+ content increased with increasing Ag+ content. Furthermore, the presence of CuO in the Ag/CuO-ZrO2 catalyst appeared to stabilize Ag+ and Zrq+ species under air. Based on H2 chemisorption and powder X-ray diffraction patterns, formation of a Ag-Cu alloy was observed on completely reduced and spent Ag/CuO-ZrO2 catalysts. Completely reduced Ag/CuO-ZrO2 catalysts exhibited a higher methanol production rate (7.5mLh−1gcat−1) compared to completely reduced CuO-ZrO2 (6.9mLh−1gcat−1) and Ag/ZrO2 catalysts (2.2mLh−1gcat−1) under the following reaction conditions: CO2/H2/N2=1/3/1, catalyst loading=500mg, W/Ftotal=1000mgcatsmL−1, reaction temperature=230°C, pressure=10bar.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.