Abstract

BackgroundPrior studies suggested that myocardial deformation is superior to conventional measures for assessing ventricular function. This study aimed to evaluate right ventricular (RV) myocardial deformation in response to increased afterload. Patients with the RV in the systemic position were compared with patients with the RV in the sub-pulmonic position with normal or only slightly elevated systolic right ventricular pressure. Correlations between global longitudinal strain (GLS), radial strain, atrioventricular plane displacement (AVPD), and exercise capacity were evaluated.Methods44 patients with congenital heart defect were enrolled in the study. The control group consisted of seven healthy volunteers. All patients underwent cardiovascular magnetic resonance (CMR) and cardiopulmonary exercise testing. We assessed biventricular myocardial function using CMR based feature tracking and compared the results to anatomic volumes.ResultsStrain analysis and displacement measurements were feasible in all participants. RVGLS and RVAVPD were reduced in both study groups compared to the control group (p<0.001). Left ventricular (LV) radial strain was significantly lower in patients with a systemic RV than in those with a subpulmonic RV and lower than in controls (p<0.001). Both LVAVPD and RVAVPD were significantly depressed in patients compared to controls (p<0.05). RVAVPD was more depressed in patients with a high systolic RV pressure than in those with normal RV pressure (p<0.001). RVAVPD did not correlate with exercise capacity in either study group. Exercise capacity in both patient groups was depressed to levels reported in previous studies, and did not correlate with RVGLS.ConclusionsBoth study groups had abnormal myocardial deformation and increased RV volumes. RVGLS in patients was lower than in controls, confirming the effect of increased afterload on myocardial performance.

Highlights

  • Right ventricular (RV) function exerts an important influence on morbidity and mortality in patients with heart disease [1] [2]

  • RVGLS and RVAVPD were reduced in both study groups compared to the control group (p

  • Left ventricular (LV) radial strain was significantly lower in patients with a systemic right ventricular (RV) than in those with a subpulmonic RV and lower than in controls (p

Read more

Summary

Introduction

Right ventricular (RV) function exerts an important influence on morbidity and mortality in patients with heart disease [1] [2]. Research over the last few decades has revealed the importance of RV function for prognosis [3] [4], in persons with CHD (Congenital Heart Disease) as those patients are often young and face repeated cardiac surgery. Tissue characterization with CMR and the use of new functional measurements (myocardial deformation, strain) from either echocardiography or CMR help to understand mechanisms of ventricular adaptation and interaction. It is known from previous studies that in patients with congenital heart defect [1], both RV volume overload and RV pressure overload can lead to RV dilatation, decreased RVEF, and eventually RV failure [12] [13]. Prior studies suggested that myocardial deformation is superior to conventional measures for assessing ventricular function. Correlations between global longitudinal strain (GLS), radial strain, atrioventricular plane displacement (AVPD), and exercise capacity were evaluated

Objectives
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.