Abstract

Abstract African easterly waves (AEWs) are identified in numerical model analyses using an objective technique based on the 700-hPa streamfunction field. This method has been developed to (i) reduce the amount of manual data interpretation, (ii) reduce the likelihood of unrelated phenomena being identified as AEWs, and (iii) facilitate completely objective comparisons between AEWs with different structures on multiple scales, in order to describe their variability. Results show this method performs well when compared to methods of AEW identification used in previous studies. The objective technique is used to analyze all AEWs that originated over tropical North Africa during July–September (JAS) 2004. Results indicate that the “average” AEW in this period bears a close resemblance to composite structures from previous research. However, there is marked variability in the characteristics and ultimate fate of AEWs. Most AEWs of JAS 2004 are first identified east of the Greenwich meridian and develop as they move westward. Mature structures over the African continent varied, ranging from isolated potential vorticity maxima confined equatorward of the objectively defined African easterly jet to broad cross-jet structures symptomatic of both baroclinic and barotropic growth. As many as 80% of the cases fell into the second category. After leaving the West African coast, 45% of the AEWs in JAS 2004 were associated with tropical cyclogenesis in either the Atlantic or Pacific Ocean basins.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.