Abstract

An affordable droplet-based flow analyzer incorporating peristaltic micro-pumps has been developed for fluorescent ammonium sensing. The cost-effective peristaltic micro-pumps, modified using 3D-printing techniques, feature a 3D-printed pump base integrated with a Hall sensor to monitor the rotation of the pump motor. This setup generates a pulse flow instead of a continuous flow, delivering specific volumes (typically between 3 to 4 μL) of solution with each rotation. By using separate pumps to deliver the aqueous and oil phases, these phases merge to form a droplet flowing stream. The relative standard deviation (RSD) values for droplet volumes range from 3.97% to 5.99% (n=50) across different pumps. The analyzer utilizes a reaction between ammonium, ortho-phthalaldehyde, and sulfite to produce a fluorescent derivative, allowing for sensitive detection of low ammonium concentrations. A custom light-emitting diode (LED)-based fluorescence detector has been fabricated using 3D printing, ensuring cost-effective production. The analyzer provides a limit of detection of 0.02 μM (3σ) and an RSD of 0.15% (n=10, 1 μM ammonium). This analyzer offers several practical advantages, including reduced reagent consumption and the potential for further development in distributed on-site analysis. The use of 3D printing facilitates rapid prototyping and customization, making the system adaptable to various analytical applications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.