Abstract

We develop and analyze an affine scaling inexact generalized Newton algorithm in association with nonmonotone interior backtracking line technique for solving systems of semismooth equations subject to bounds on variables. By combining inexact affine scaling generalized Newton with interior backtracking line search technique, each iterate switches to inexact generalized Newton backtracking step to strict interior point feasibility. The global convergence results are developed in a very general setting of computing trial steps by the affine scaling generalized Newton-like method that is augmented by an interior backtracking line search technique projection onto the feasible set. Under some reasonable conditions we establish that close to a regular solution the inexact generalized Newton method is shown to converge locally p-order q-superlinearly. We characterize the order of local convergence based on convergence behavior of the quality of the approximate subdifferentials and indicate how to choose an inexact forcing sequence which preserves the rapid convergence of the proposed algorithm. A nonmonotonic criterion should bring about speeding up the convergence progress in some ill-conditioned cases.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.