Abstract
At low energy (300 eV), the Ar+ ions bombardment lead to the formation of small nanodots on the InP and the InSb surface compounds. We used the Auger electron spectroscopy (AES) and electron energy loss spectroscopy (EELS) to detect the presence of these features. However, these techniques alone do not allow us to determine with accuracy their disturbed dimension related to the height and periodicity. For this reason, we combine these spectroscopy methods with the TRIM (transport and range of ions in matter), SRIM (Stopping and Range of Ion in Matter) and Sigmund simulation methods to show the mechanism of interaction between the argon ions and the III-V compounds cited above and determine the dimension of disturbed areas as a function of Ar+ energy during 30 min.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: IOP Conference Series: Materials Science and Engineering
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.