Abstract
A new approach for quantitation in laser ablation-inductively coupled plasma atomic emission spectrometry (LA-ICPAES) is presented. A portion of the laser-ablated sample aerosol is diverted to an aerosol mass monitor to measure variations in the amount of sample ablated and transported to the ICP torch. This provides a normalization for variations in laser ablation efficiency due to changes in laser power and focus at the sample and variations in material transport out of the ablation cell and into the ICP torch. During the laser ablation sampling process, solution standards are nebulized and the aerosol is added to the laser-ablated aerosol to generate a standard addition curve for the analyte being determined. The standard addition procedure corrects for potential plasma-related matrix effects in the ICP emission signal resulting from the ablated sample. The precision of this method, for triplicate analyses for the determination of 16 elements in four glass samples, and the accuracy of this method relative to the nominal glass compositions are both approximately 10%. 19 refs., 4 figs., 4 tabs.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.