Abstract

An original theoretical model for vibration onset of the vocal folds in the air-flow coming from the human subglottal tract is designed, which allows studying the influence of the physical properties of the vocal folds (e.g., geometrical shape, mass, viscosity) on their vibration characteristics (such as the natural frequencies, mode shapes of vibration and the thresholds of instability). The mathematical model of the vocal fold is designed as a simplified dynamic system of two degrees of freedom (rotation and translation) vibrating on an elastic foundation in the wall of a channel conveying air. An approximate unsteady one-dimensional flow theory for the inviscid incompressible fluid is presented for the phonatory air-flow. A generally defined shape of the vocal-fold surface is considered for expressing the unsteady aerodynamic forces in the glottis. The parameters of the mechanical part of the model, i.e., the mass, stiffness and damping matrices, are related to the geometry and material density of the vocal folds as well as to the fundamental natural frequency and damping known from experiments. The coupled numerical solution yields the vibration characteristics (natural frequencies, damping and mode shapes of vibration), including the instability thresholds of the aeroelastic system. The vibration characteristics obtained from the coupled numerical solution of the system appear to be in reasonable qualitative agreement with the physiological data and clinical observations. The model is particularly suitable for studying the phonation threshold, i.e., the onset of vibration of the vocal folds.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.