Abstract

Based on the detailed flow characteristics analyses of a base four-propeller/wing integration at a low Reynolds number of 3.0×105, new multi-propeller/wing integrated aerodynamic design philosophy and methodology have been developed and validated numerically. The core of the present design philosophy is to make good use of coupling effects between two adjacent propellers to realize the low-Reynolds-number flow-field reconstruction, thus to improve the aerodynamic performance of the multi-propeller/wing integration at the operating power-on state. The multi-reference frame (MRF) technique which quasi-steadily solves the Reynolds-averaged Navier–Stokes (RANS) equations coupled with transition model is used to design the example four-propeller/wing integration at a low Reynolds number of 3.0×105. As a result, the designed multi-propeller/wing integration yields a maximum lift-to-drag ratio of 72.81, which represents a 21.08% increase compared to the base four-propeller/wing integration.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.