Abstract
The problem of aerodynamic configuration design optimization is a multidisciplinary design optimization (MDO) problem, and recently the MDO method is widely adopted in the field of hypersonic vehicle configuration design. From the aerodynamic point of view, the aerodynamics, aerothermodynamics and trajectory are considered in this paper. Generally speaking, the aerodynamic characteristics, aerodynamic heating and trajectory are determined by the aerodynamic configuration and the design of flight trajectory. The design method considering these three disciplines is proposed. The parametric geometrical configurations are proposed, and the aerodynamic characteristics are predicted by the rapid and effective engineering method. The optimization of aerodynamic configuration considering the integration of aerodynamics, aerothermodynamics and trajectory is investigated based on the parametric geometrical configuration. Maximum lift-to-drag ratio, maximum range of the trajectory and minimum total heat load of the stagnation point are chosen as the three optimal goals. The detailed research indicates that the optimal configurations and trajectories with different weighting factors can be obtained by the optimization, and there are obvious differences between them. The optimal configuration and flight trajectory obtained by the optimization can be used as the feasible schemes in the future work.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.