Abstract
Abstract Open rotors can play a critical role towards transitioning to a more sustainable aviation by providing a fuel-efficient alternative. This paper considers the sensitivity of an open-rotor engine to variations of three operational parameters during take-off, focusing on both aerodynamics and aeroacoustics. Via a sensitivity analysis, insights to the complex interactions of aerodynamics and aeroacoustics can be gained. For both the aerodynamics and aeroacoustics of the engine, numerical methods have been implemented. Namely, the flowfield has been solved using unsteady Reynolds Averaged Navier Stokes and the acoustic footprint of the engine has been quantified through the Ffowcs Williams-Hawking equations. The analysis has concluded that the aerodynamic performance of the open rotor can decisively be impacted by small variations of the operational parameters. Specifically, blade loading increased by 9.8% for a 5% decrease in inlet total temperature with the uncertainty being amplified through the engine. In comparison, the aeroacoustic footprint of the engine had more moderate variations, with the overall sound pressure level increasing by up to 2.4dB for a microphone lying on the engine axis and aft of the inlet. The results signify that there is considerable sensitivity in the model and shall be systematically examined during the design or optimisation process.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.