Abstract
Functionalization of CC bonds by oxidative cleavage plays an important role in organic synthesis. However, the traditional functionalized products are mainly aldehydes, ketones and carboxylic acids, and the substrates are limited to examples of active aromatic olefins with very scarce inactive olefins. Herein we disclose an efficient protocol for the direct formation of esters by oxidative cleavage of CC bonds using heterogeneous iron nanocomposite catalyst supported on nitrogen-doped carbon materials with molecular oxygen and tert-butylhydroperoxide (TBHP) as the oxidants. The results show that molecular oxygen as the terminal oxidant is mainly responsible for the cleavage process, and that the auxiliary oxidant TBHP promotes the formation of the intermediate epoxide, thus increasing the selectivity of the product. The catalytic system has a wide range of substrate compatibility involving the challenging inactive aliphatic and long-chain alkyl aryl olefins. The catalyst was reused seven times with no loss in catalytic activity. Characterization and control experiments uncover that the core-shell Fe and Fe3C nanoparticles encapsulated by graphitic carbon play a predominant role in catalyzing the oxidative cleavage of olefins to esters. Preliminary mechanistic studies disclose that this process involves both free radical reactions and tandem sequential reactions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.