Abstract

BackgroundEndothelial dysfunction associated with hypercholesterolemia is an early event in atherosclerosis characterized by redox imbalance associated with high superoxide production and reduced nitric oxide (NO) and hydrogen peroxide (H2O2) production. Aerobic exercise training (AET) has been demonstrated to ameliorate atherosclerotic lesions and oxidative stress in advanced atherosclerosis. However, whether AET protects against the early mechanisms of endothelial dysfunction in familial hypercholesterolemia remains unclear. This study investigated the effects of AET on endothelial dysfunction and vascular redox status in the aortas of LDL receptor knockout mice (LDLr−/−), a genetic model of familial hypercholesterolemia.MethodsTwelve-week-old C57BL/6J (WT) and LDLr−/− mice were divided into sedentary and exercised (AET on a treadmill 1 h/5 × per week) groups for 4 weeks. Changes in lipid profiles, endothelial function, and aortic NO, H2O2 and superoxide production were examined.ResultsTotal cholesterol and triglycerides were increased in sedentary and exercised LDLr−/− mice. Endothelium-dependent relaxation induced by acetylcholine was impaired in aortas of sedentary LDLr−/− mice but not in the exercised group. Inhibition of NO synthase (NOS) activity or H2O2 decomposition by catalase abolished the differences in the acetylcholine response between the animals. No changes were noted in the relaxation response induced by NO donor sodium nitroprusside or H2O2. Neuronal NOS expression and endothelial NOS phosphorylation (Ser1177), as well as NO and H2O2 production, were reduced in aortas of sedentary LDLr−/− mice and restored by AET. Incubation with apocynin increased acetylcholine-induced relaxation in sedentary, but not exercised LDLr−/− mice, suggesting a minor participation of NADPH oxidase in the endothelium-dependent relaxation after AET. Consistent with these findings, Nox2 expression and superoxide production were reduced in the aortas of exercised compared to sedentary LDLr−/− mice. Furthermore, the aortas of sedentary LDLr−/− mice showed reduced expression of superoxide dismutase (SOD) isoforms and minor participation of Cu/Zn-dependent SODs in acetylcholine-induced, endothelium-dependent relaxation, abnormalities that were partially attenuated in exercised LDLr−/− mice.ConclusionThe data gathered by this study suggest AET as a potential non-pharmacological therapy in the prevention of very early endothelial dysfunction and redox imbalance in familial hypercholesterolemia via increases in NO bioavailability and H2O2 production.

Highlights

  • Endothelial dysfunction associated with hypercholesterolemia is an early event in atherosclerosis characterized by redox imbalance associated with high superoxide production and reduced nitric oxide (NO) and hydrogen peroxide (H2O2) production

  • We demonstrated that 4 weeks of Aerobic exercise training (AET) reversed the reduction in Ser1177 endothelial NO synthase (NOS) (eNOS) phosphorylation, normalizing the levels of NO in the aortas of LDLr−/− mice to levels similar to those found in WT animals, without increasing the dimerization of eNOS

  • We found that reductions in the neuronal nitric oxide synthase (nNOS) and H2O2 components of ACh-induced relaxation of the aorta in 16-weekold LDLr−/− mice were reversed by AET

Read more

Summary

Introduction

Endothelial dysfunction associated with hypercholesterolemia is an early event in atherosclerosis characterized by redox imbalance associated with high superoxide production and reduced nitric oxide (NO) and hydrogen peroxide (H2O2) production. It is accepted that LDLr−/− mice fed a chow diet develop small lesions in the aortic root and impaired endothelium-dependent relaxation in the thoracic aorta [4, 5], despite lacking atherosclerotic plaques throughout the descending aorta [6,7,8]. In this model of genetic hypercholesterolemia, endothelial dysfunction is associated with impaired hydrogen peroxide (H2O2) production [4]. Reactive oxygen species (ROS) participate in the pathogenesis of atherosclerotic disease via multiple pathways

Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.