Abstract

Phenazine-containing spent culture supernatants of Pseudomonas aeruginosa concentrated with a C18 solid-phase extraction cartridge initiate NAD(P)H-dependent denitration of 2,4,6-trinitrotoluene (TNT). In this study, TNT denitration was investigated under aerobic conditions using two phenazine secondary metabolites excreted by P. aeruginosa, pyocyanin (Py) and its precursor phenazine-1- carboxylic acid (PCA), and two chemically synthesized pyocyanin analogs, phenazine methosulfate (PMS+) and phenazine ethosulfate (PES+). The biomimetic Py/NAD(P)H/O2 system was characterized and found to extensively denitrate TNT in unbuffered aqueous solution with minor production of toxic amino aromatic derivatives. To a much lesser extent, TNT denitration was also observed with PMS+ and PES+ in the presence of NAD(P)H. No TNT denitration was detected with the biomimetic PCA/NAD(P)H/O2 system. Electron paramagnetic resonance (EPR) spectroscopy analysis of the biomimetic Py/NAD(P)H/O2 system revealed the generation of superoxide radical anions (O2 •−). In vitro TNT degradation experiments in the presence of specific inhibitors of reactive oxygen species suggest a nucleophilic attack of superoxide radical anion followed by TNT denitration through an as yet unknown mechanism. The results of this research confirm the high functional versatility of the redox-active metabolite pyocyanin and the susceptibility of aromatic compounds bearing electron withdrawing substituents, such as nitro groups, to superoxide-driven nucleophilic attack.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.