Abstract

A new numerical algorithm for acoustic noise generation is developed. The approach involves two steps comprising an incompressible flow part and an inviscid acoustic part. The acoustic part can be started at any time of the incompressible computation. The formulation can be applied both for isentropic flows and non-isentropic flows. The model is validated for the cases of an isentropic pulsating sphere and non-isentropic flows past a circular cylinder. In the latter case the computations show that the generated acoustic field in addition to the dominant Strouhal frequency, f0, contains a slightly higher frequency, f2, and a modulating lower frequency, f1=f2−f0. Numerical experiments with different interpolation schemes, boundary conditions, etc., show that the appearance of these modes is not an artifact from the numerical discretization.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.