Abstract

The aero-gravity assist maneuver is here proposed as a tool to improve the efficiency of the gravity assist as, thanks to the interaction with the planetary atmospheres, the angular deviation of the velocity vector can be definitely increased. Even though the drag reduces the spacecraft velocity, the overall Δv gain could be remarkable whenever a high lift-to-drag vehicle is supposed to fly. Earlier studies offer simplified approaches according to both the dynamics modeling and the atmospheric trajectory constraints. In this paper a 3D dynamical model is adopted and a more realistic L/D performance for the hypersonic vehicle is assumed. Some relevant aspects related to the multidisciplinary design have been considered such as heating rates and structural loads bounding. Comparisons between in and out of plane maneuvering have been performed by assuming, as control variables, either the angle of attack or the bank angle, respectively. The optimal control problem has been solved by selecting a direct method approach. The dynamics has been transcribed into a set of non-linear constraints and the arising non-linear programming problem has been solved with a sequential quadratic programming solver. To gain the global optimum convergence the initial guess has been supplied by solving the same problem by a direct shooting technique and a genetic optimizer.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.