Abstract

With the rapid growth of the aviation fields, the remaining useful life (RUL) estimation of aero-engine has become the focus of the industry. Due to the shortage of existing prediction methods, life prediction is stuck in a bottleneck. Aiming at the low efficiency of traditional estimation algorithms, a more efficient neural network is proposed by using Convolutional Neural Networks (CNN) to replace Long-Short Term Memory (LSTM). Firstly, multi-sensor degenerate information fusion coding is realized with the convolutional autoencoder (CAE). Then, the temporal convolutional network (TCN) is applied to achieve efficient prediction with the obtained degradation code. It does not depend on the iteration along time, but learning the causality through a mask. Moreover, the data processing is improved to further improve the application efficiency of the algorithm. ExtraTreesClassifier is applied to recognize when the failure first develops. This step can not only assist labelling, but also realize feature filtering combined with tree model interpretation. For multiple operation conditions, new features are clustered by K-means++ to encode historical condition information. Finally, an experiment is carried out to evaluate the effectiveness on the Commercial Modular Aero-Propulsion System Simulation (CMAPSS) datasets provided by the National Aeronautics and Space Administration (NASA). The results show that the proposed algorithm can ensure high-precision prediction and effectively improve the efficiency.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.