Abstract
PurposeThe purpose of this paper is to propose a framework to detect adverse drug reactions (ADRs) using internet user search data, so that ADR events can be identified early. Empirical investigation of Avandia, a type II diabetes treatment, is conducted to illustrate how to implement the proposed framework.Design/methodology/approachTypical ADR identification measures and time series processing techniques are used in the proposed framework. Google Trends Data are employed to represent user searches. The baseline model is a disproportionality analysis using official drug reaction reporting data from the US Food and Drug Administration’s Adverse Event Reporting System.FindingsResults show that Google Trends series of Avandia side effects search reveal a significant early warning signal for the side effect emergence of Avandia. The proposed approach of using user search data to detect ADRs is proved to have a longer leading time than traditional drug reaction discovery methods. Three more drugs with known adverse reactions are investigated using the selected approach, and two are successfully identified.Research limitations/implicationsValidation of Google Trends data’s representativeness of user search is yet to be explored. In future research, user search in other search engines and in healthcare web forums can be incorporated to obtain a more comprehensive ADR early warning mechanism.Practical implicationsUsing internet data in drug safety management with a proper early warning mechanism may serve as an earlier signal than traditional drug adverse reaction. This has great potential in public health emergency management.Originality/valueThe research work proposes a novel framework of using user search data in ADR identification. User search is a voluntary drug adverse reaction exploration behavior. Furthermore, user search data series are more concise and accurate than text mining in forums. The proposed methods as well as the empirical results will shed some light on incorporating user search data as a new source in pharmacovigilance.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.