Abstract

Machine learning is being applied to continuous-variable quantum key distribution (CVQKD) systems as defense countermeasures for attack classification. However, recent studies have demonstrated that most of these detection networks are not immune to adversarial attacks. In this paper, we propose to implement typical adversarial attack strategies against the CVQKD system and introduce a generalized defense scheme. Adversarial attacks essentially generate data points located near decision boundaries that are linearized based on iterations of the classifier to lead to misclassification. Using the DeepFool attack as an example, we test it on four different CVQKD detection networks and demonstrate that an adversarial attack can fool most CVQKD detection networks. To solve this problem, we propose an improved adversarial perturbation elimination with a generative adversarial network (APE-GAN) scheme to generate samples with similar distribution to the original samples to defend against adversarial attacks. The results show that the proposed scheme can effectively defend against adversarial attacks including DeepFool and other adversarial attacks and significantly improve the security of communication systems.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.