Abstract

Adversarial training (AT), which is known as a robust training method for defending against adversarial examples, usually loses the performance of models for clean examples due to the feature distribution discrepancy between clean and adversarial. In this paper, we propose a novel Adversarial Anchor-guided Feature Refinement (AAFR) defense method aimed at reducing the discrepancy and delivering reliable performances for both clean and adversarial examples. We devise adversarial anchor that detects whether the feature comes from clean or adversarial example. Then, we use adversarial anchor to refine the feature to reduce the discrepancy. As a result, the proposed method substantially achieves adversarial robustness while preserving the performance for clean examples. The effectiveness of the proposed method is verified with comprehensive experiments on CIFAR-10, CIFAR-100, and Tiny ImageNet datasets.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.