Abstract

AbstractConvective precipitation systems in the summer often cause sudden heavy precipitation and largely affect various human activities, but the rapid evolution limits our predicting capability. Phased‐array weather radars (PAWRs) with a high spatiotemporal resolution are useful for observing such precipitation system. A recently developed numerical weather prediction (NWP) system assimilates PAWR observations with a 500‐m mesh NWP model. It initiates 30‐min extended forecasts every 30 s, much more frequently than the operational NWP and nowcasting systems. This study investigates the benefits of the 30‐s‐updating NWP system in a single but representative convective precipitation event in which a convective cloud developed within 10 min, and its evolution was not well predicted by operational precipitation nowcasting. The rapidly updating NWP system successfully predicts the evolution of the convective cloud. Assimilating the PAWR observations every 30 s continuously modifies the moisture and dynamical fields and improves the forecast accuracy consistently.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.