Abstract
This study introduces a novel approach for the early detection of pancreatic cancer through biofluid spectroscopy, leveraging a unique machine learning pipeline comprising class-specific principal component analysis (PCA), linear discriminant analysis (LDA), and support vector machine (SVM) in both real patient and synthetic data. By conducting separate PCA on cancerous and non-cancerous samples and integrating the projections prior to LDA and SVM classification, we demonstrate significantly improved diagnostic accuracy compared to traditional methods. This methodology not only enhances predictive performance but also offers deeper insights into the influence of molecular spectra on model efficacy. Our findings, validated on real patient data, suggest a promising avenue for developing non-invasive, accurate diagnostic tools for early-stage pancreatic cancer detection.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.