Abstract

Abstract Perovskite Solar Cells (PSCs) with efficiency greater than 25% have shown promising prospects for future green technology. However, exposure to moisture, along with thermal and photo instability are critical issues limiting commercialization of the PSC devices. Indeed, perovskite-provoked instability of PSCs together with decomposition of hole transport layer (HTL) and electron transport layer (ETL) contribute to overall degradation process and hence affecting the performance of the device. Herein, we discuss instability of PSCs in various operating conditions such as UV light, humidity, environmental ingredients and temperature. Furthermore, we report the recent progress towards improvement in long-term stability of PSCs and those efforts include but not limited to introducing new HTLs, engineering of perovskite materials, interfacial modification, electrodes and novel device configurations and behavior of the device under encapsulation and un-encapsulation conditions. Moreover, we also discuss the researcher's efforts to improve the optical, electrical and chemical properties of different layer of PSCs. Additionally, to address the future research directions such as the need to improve the intrinsic stability of the perovskite absorber layer, design architecture of the device, and search for new durable materials are also proposed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.