Abstract

To provide multidimensional velocity compensation for real-time phase-contrast flow MRI. The proposed method introduces asymmetric gradient echoes for highly undersampled radial FLASH MRI with phase-sensitive image reconstruction by regularized nonlinear inversion (NLINV). Using an adapted gradient delay correction the resulting image quality was analyzed by simulations and experimentally validated at 3 Tesla. For real-time flow MRI the reduced gradient-echo timing allowed for the incorporation of velocity-compensating waveforms for all imaging gradients at even shorter repetition times. The results reveal a usable degree of 20% asymmetry. Real-time flow MRI with full velocity compensation eliminated signal void in a flow phantom, confirmed flow parameters in healthy subjects and demonstrated signal recovery and phase conservation in a patient with aortic valve insufficiency and stenosis. Exemplary protocols at 1.4-1.5 mm resolution and 6 mm slice thickness achieved total acquisition times of 33.3-35.7 ms for two images (7 spokes each) with and without flow-encoding gradient. Asymmetric gradient echoes were successfully implemented for highly undersampled radial trajectories. The resulting temporal gain offers full velocity compensation for real-time phase-contrast flow MRI which minimizes false-positive contributions from complex flow and further enhances the temporal resolution compared with acquisitions with symmetric echoes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.