Abstract

This contribution is intended to provide researchers with a comprehensive overview of the current state-of-the-art concerning real-time 3D reconstruction methods suitable for medical endoscopy. Over the past decade, there have been various technological advancements in computational power and an increased research effort in many computer vision fields such as autonomous driving, robotics, and unmanned aerial vehicles. Some of these advancements can also be adapted to the field of medical endoscopy while coping with challenges such as featureless surfaces, varying lighting conditions, and deformable structures. To provide a comprehensive overview, a logical division of monocular, binocular, trinocular, and multiocular methods is performed and also active and passive methods are distinguished. Within these categories, we consider both flexible and non-flexible endoscopes to cover the state-of-the-art as fully as possible. The relevant error metrics to compare the publications presented here are discussed, and the choice of when to choose a GPU rather than an FPGA for camera-based 3D reconstruction is debated. We elaborate on the good practice of using datasets and provide a direct comparison of the presented work. It is important to note that in addition to medical publications, publications evaluated on the KITTI and Middlebury datasets are also considered to include related methods that may be suited for medical 3D reconstruction.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.