Abstract

The development of in vivo neuroimaging techniques has yielded an incredible amount of digital information about the brain. Neuroimaging techniques are increasingly being used to study human cognitive processes, create brain–machine interfaces, and also to identify and diagnose certain brain disorders. Currently, neuroscientists and medics actively use different methods for brain scans, including electro- and magnetoencephalography (EEG/MEG), functional near-infrared spectroscopy (fNIRS), electrocorticography (ECoG), functional magnetic resonance imaging (fMRI), positron emission tomography (PET), and diffusion tensor imaging (DTI). Recent advances in signal processing and machine learning for neuroimaging data using various signal processing methods have made impressive progress in solving a number of practical tasks in medicine, healthcare, neuroscience, biomedical engineering, brain–machine interfaces, and cognitive science, to name but a few. This Special Issue aims to provide a forum for academic and industrial communities to present and discuss the latest theoretical and experimental results related to recent advances in neuroimaging data processing in terms of new theories, algorithms, architectures, and applications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.