Abstract

Nanoparticles (NPs) play increasingly important roles in nanotechnology and nanomedicine in which nanoparticle surface chemistry allows for control over interactions with other nanoparticles and biomolecules. In particular, for applications in drug and gene delivery, a fundamental understanding of the NP-nucleic acid interface allows for development of more efficient and effective nanoparticle carriers. Computational modeling can provide insights of processes occurring at the inorganic NP-nucleic interface in detail that is difficult to access by experimental methods. With recent advances such as the use of graphics processing units (GPUs) for simulations, computational modeling has the potential to give unprecedented insight into inorganic-biological interfaces via the examination of increasingly large and complex systems. In this Topical Review, we briefly review computational methods relevant to the interactions of inorganic NPs and nucleic acids and highlight recent insights obtained from various computational methods that were applied to studies of inorganic nanoparticle-nanoparticle and nanoparticle-nucleic acid interfaces.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.