Abstract

The first candidate rotavirus vaccine was a live attenuated oral vaccine made by the classical empirical method of serial passage of virus in tissue culture cells. Current tetravalent vaccine candidates that are in the final stages of efficacy testing in the United States were made by genetic reassortment. This article briefly highlights how advances in the basic understanding of the molecular biology of rotaviruses have facilitated vaccine development. New approaches for second-generation vaccines and improvements in vaccine efficacy based on further exploitation of the tools and knowledge of rotavirus molecular biology and pathogenesis are discussed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.