Abstract

As an emerging field, DNA nanotechnology has been applied to the fabrication of drug delivery systems. Unprecedented spatial addressability and intrinsic sequence encoding enable DNA strands to self-assemble into well-defined 2D and 3D DNA nanostructures with specifically controlled sizes, shapes and surface charges. Multifunctional DNA nanostructures have been created and applied as promising platforms for drug delivery, imaging, and theranostics. Advantages of chemotherapy, gene therapy, and immunotherapy, among others, have been integrated into such functional nanodevices, showing potential in tumor-targeted therapy and diagnosis. In this review, we summarize general methods for the construction of DNA nanodevices and focus on targeting strategies favored by the compatibility of DNA nanotechnology. Additionally, we highlight the outlook and challenges facing the use of DNA nanotechnology in cancer therapy.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.