Abstract
The effect of dehydration, cryopreservation, and reculture conditions on growth recovery (%) of vanilla (Vanilla planifolia) shoot-tips was evaluated using a D-cryoplate procedure. Tissues were excised from in vitro grown plantlets, preconditioned on MS semisolid medium supplemented with 0.15 M trehalose for 1 d, loaded in a solution of 0.4 M sucrose or trehalose and 2 M glycerol for 30 min, and dehydrated within a laminar flow cabinet for various durations (30, 60, 90, 120, 150, and 180 min). The same preconditioning and loading treatments were compared using dehydration with vitrification solutions (PVS2 or PVS3) for 30 min at room temperature according to droplet-vitrification and V-cryoplate methods. The highest (33%) recovery of cryopreserved shoot-tips was achieved using the D-cryoplate method after 0.15 M trehalose preconditioning, loading with sucrose-glycerol solution and desiccation for 180 min. DSC analyses revealed that the osmotically active water (OAW) content of the shoot-tips was reduced from 77% (fresh weight basis) to 17% after the only effective drying duration (180 min). Melting endotherms indicated that crystallization events accompanied cryopreservation of the tissues. Proliferation of multiple shoots was obtained by indirect organogenesis. Histological analysis of the explants during post-cryopreservation recovery confirmed the organogenic nature of the callus formed after 3–4 mo of reculture in the dark on semisolid multiplication medium. This was followed by a secondary organogenesis on MS medium with kinetin (2 mg L−1) and exposure to a photoperiod. At present, this is the most optimized cryopreservation protocol for shoot-tips of V. planifolia.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: In Vitro Cellular & Developmental Biology - Plant
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.