Abstract
Previously, we developed a unified theory of the excitation energy transfer (EET) in dimers, which is applicable to all of the cases of excitonic coupling strength (Kimura, A.; Kakitani, T.; Yamato, T. J. Phys. Chem. B 2000, 104, 9276). This theory was formulated only for the forward reaction of the EET. In the present paper, we advanced this theory so that it might include the backward reaction of the EET as well as the forward reaction. This new theory is formulated on the basis of the generalized master equation (GME), without using physically unclear assumptions. Comparing the present result with the previous one, we find that the excitonic coupling strengths of criteria between exciton and partial exciton and between hot transfer and hopping (Förster) mechanisms are reduced by a factor of 2. The critical coherency eta c is also reduced significantly.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.