Abstract

This report summarizes the work carried out during the period of September 29, 2000 to January 15, 2004 under DOE Research Contract No. DE-FC26-00BC15308. High temperatures and reactive fluids in sedimentary basins dictate that interplay and feedback between mechanical and geochemical processes significantly influence evolving rock and fracture properties. Not only does diagenetic mineralization fill in once open fractures either partially or completely, it modifies the rock mechanics properties that can control the mechanical aperture of natural fractures. In this study, we have evolved an integrated methodology of fractured reservoir characterization and we have demonstrated how it can be incorporated into fluid flow simulation. The research encompassed a wide range of work from geological characterization methods to rock mechanics analysis to reservoir simulation. With regard to the characterization of mineral infilling of natural fractures, the strong interplay between diagenetic and mechanical processes is documented and shown to be of vital importance to the behavior of many types of fractured reservoirs. Although most recent literature emphasizes Earth stress orientation, cementation in fractures is likely a critically important control on porosity, fluid flow attributes, and even sensitivity to effective stress changes. The diagenetic processes of dissolution and partial cementation are key controls on the creation and distribution of open natural fractures within hydrocarbon reservoirs. The continuity of fracture-porosity is fundamental to how fractures conduct fluids. In this study, we have made a number of important discoveries regarding fundamental properties of fractures, in particular related to the prevalence of kinematically significant structures (crack-seal texture) within otherwise porous, opening-mode fractures, and the presence of an aperture size threshold below which fractures are completely filled and above which porosity is preserved. These observations can be linked to models of quartz cementation. Significant progress has been made as well in theoretical fracture mechanics and geomechanical modeling, allowing prediction of spatial distributions of fractures that mimic patterns observed in nature. Geomechanical modeling shows the spatial arrangement of opening mode fractures (joints and veins) is controlled by the subcritical fracture index of the material. In particular, we have been able to identify mechanisms that control the clustering of fractures in slightly deformed rocks. Fracture mechanics testing of a wide range of clastic rocks shows that the subcritical index is sensitive to diagenetic factors. We show geomechanical simulations of fracture aperture development can be linked to diagenetic models, modifying fracture porosity as fractures grow, and affect the dynamics of fracture propagation. Fluid flow simulation of representative fracture pattern realizations shows how integrated modeling can give new insight into permeability assessment in the subsurface. Using realistic, geomechanically generated fracture patterns, we propose a methodology for permeability estimation in nonpercolating networks.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.