Abstract
This study investigates the solution of a boundary value problem using two numerical methods: The Rayleigh-Ritz method and the Finite Element Method (FEM). The aim is to compare the performance of these methods and assess the reliability of FEM as a generalization of the Rayleigh-Ritz approach for more complex problems. The Rayleigh-Ritz method and the linear element formulation of the finite element method were employed to solve the boundary value problem. A detailed comparison of the results obtained from both methods was performed. Graphical illustrations were used to present the solutions, and potential sources of error were analyzed, including element and domain approximation errors, round-off errors, and the impact of using linear rather than quadratic elements in FEM. The solutions generated by both methods were found to be in close agreement, demonstrating that FEM is a viable alternative to the Rayleigh-Ritz method for solving boundary value problems. The minor discrepancies observed can be attributed to approximation errors and the choice of linear elements in the finite element analysis. This work highlights the applicability and effectiveness of both the Rayleigh-Ritz method and FEM in solving boundary value problems. It underscores the finite element method’s flexibility, especially in handling more complex boundary conditions and geometries, and contributes to the understanding of the factors influencing the accuracy of numerical methods in structural analysis.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.