Abstract

Long-term incubation of proteins with glucose leads to the formation of advanced glycation end products (AGE). Physiological aspects of the catabolism of non-enzymically glycated proteins were studied in vivo and in vitro. AGE-modified BSA (AGE-BSA) was a mixture of high-Mr (cross-linked), monomeric and low-Mr (fragmented) AGE-BSA. After intravenous administration in rat, all three fractions of AGE-BSA accumulated extremely rapidly and almost exclusively in liver. Uptake in liver endothelial, Kupffer and parenchymal cells accounted for approx. 60%, 25% and 10-15% respectively of hepatic elimination. Both cross-linked and monomeric AGE-BSA were efficiently taken up and degraded in cultures of purified liver endothelial and Kupffer cells. Endocytosis of AGE-BSA by these cells was inhibited by several ligands for the scavenger receptor. Although 125I-Hb was not endocytosed in vitro, 125I-AGE-Hb was effectively endocytosed by a mechanism that was subject to inhibition by AGE-BSA. Endocytosis of N-terminal propeptide of type I procollagen, a physiological ligand for the scavenger receptor, was effectively inhibited by AGE-Hb and AGE-BSA. We conclude that AGE-modification renders macromolecules susceptible for elimination via the scavenger receptor of both liver endothelial and Kupffer cells.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.