Abstract
This paper concerns very-short-term (5-Minute) forecasting of photovoltaic power generation. Developing the methods useful for this type of forecast is the main aim of this study. We prepared a comprehensive study based on fragmentary time series, including 4 full days, of 5 min power generation. This problem is particularly important to microgrids’ operation control, i.e., for the proper operation of small energy micro-systems. The forecasting of power generation by renewable energy sources on a very-short-term horizon, including PV systems, is very important, especially in the island mode of microgrids’ operation. Inaccurate forecasts can lead to the improper operation of microgrids or increasing costs/decreasing profits for microgrid operators. This paper presents a short description of the performance of photovoltaic systems, particularly the main environmental parameters, and a very detailed statistical analysis of data collected from four sample time series of power generation in an existing PV system, which was located on the roof of a building. Different forecasting methods, which can be employed for this type of forecast, and the choice of proper input data in these methods were the subject of special attention in this paper. Ten various prognostic methods (including hybrid and team methods) were tested. A new, proprietary forecasting method—a hybrid method using three independent MLP-type neural networks—was a unique technique devised by the authors of this paper. The forecasts achieved with the use of various methods are presented and discussed in detail. Additionally, a qualitative analysis of the forecasts, achieved using different measures of quality, was performed. Some of the presented prognostic models are, in our opinion, promising tools for practical use, e.g., for operation control in low-voltage microgrids. The most favorable forecasting methods for various sets of input variables were indicated, and practical conclusions regarding the problem under study were formulated. Thanks to the analysis of the utility of different forecasting methods for four analyzed, separate time series, the reliability of conclusions related to the recommended methods was significantly increased.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.