Abstract

Isotopes of heavier gases including carbon (13C/14C), nitrogen (13N), and oxygen (18O) are highly important because they can be substituted for naturally occurring atoms without significantly perturbing the biochemical properties of the radiolabelled parent molecules. These labelled molecules are employed in clinical radiopharmaceuticals, in studies of brain disease and as imaging probes for advanced medical imaging techniques such as positron-emission tomography (PET). Established distillation-based isotope gas separation methods have a separation factor (S) below 1.05 and incur very high operating costs due to high energy consumption and long processing times, highlighting the need for new separation technologies. Here, we show a rapid and highly selective adsorption-based separation of 18O2 from 16O2 with S above 60 using nanoporous adsorbents operating near the boiling point of methane (112 K), which is accessible through cryogenic liquefied-natural-gas technology. A collective-nuclear-quantum effect difference between the ordered 18O2 and 16O2 molecular assemblies confined in subnanometer pores can explain the observed equilibrium separation and is applicable to other isotopic gases.

Highlights

  • Isotopes of heavier gases including carbon (13C/14C), nitrogen (13N), and oxygen (18O) are highly important because they can be substituted for naturally occurring atoms without significantly perturbing the biochemical properties of the radiolabelled parent molecules

  • The dynamic adsorption-based separation was measured at different temperatures using a custom-made flow-type mixed gas adsorption apparatus coupled to a quadrupole mass spectrometer (MS) (Supplementary Figs. 2 and 3; Supplementary Notes 2 and 3)[29]

  • The effective pore widths determined from the N2 adsorption isotherms at 77 K are 0.7 nm for carbide-derived carbon (CDC) and ACF5 and 0.8 nm and

Read more

Summary

Introduction

Isotopes of heavier gases including carbon (13C/14C), nitrogen (13N), and oxygen (18O) are highly important because they can be substituted for naturally occurring atoms without significantly perturbing the biochemical properties of the radiolabelled parent molecules These labelled molecules are employed in clinical radiopharmaceuticals, in studies of brain disease and as imaging probes for advanced medical imaging techniques such as positronemission tomography (PET). Stable isotope technologies have attracted increasing interest over the last decade due to their indispensable role in plant, aquatic, and animal life[1,2,3,4] They are widely used as radiolabelled probes in isotopic analysis methods[5,6,7,8], therapeutic cancer drugs[9,10], and environmental studies[11,12]. Alternative technologies are needed to meet the high demand for 18O in healthcare and environmental science fields

Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.