Abstract
In this study, SiO2 nanoparticles were modified by 3-aminopropyltriethoxysilane (APTES) and then applied to prepare a novel polyacrylonitrile (PAN) composite nanofiber adsorbent by the electrospinning method. In addition, the adsorbent was characterized by SEM, BET, and FTIR analyses. Then the effects of pH, SiO2 and APTES content, adsorbent dosage, contact time and temperature were investigated. Moreover, adsorption experiments were carried out with initial concentrations in the range of 30–500mgL−1 and the adsorbent affinity for metal ions was in order of Th4+>U6+>Cd2+>Ni2+. Furthermore, it was observed that the optimum pH for adsorption was different for each metal. Some isotherm and kinetic models were applied to analyze the experimental data, among which the Langmuir and pseudo-second order models were better than the others. The regeneration study showed that the adsorbent could be used for industrial processes repeatedly without any significant reduction in its adsorption capacity. Based on the Langmuir model, the maximum adsorption capacity of Th4+, U6+, Cd2+, and Ni2+ at 45°C was 249.4, 193.1, 69.5 and 138.7mgg−1, respectively. Besides, the calculated thermodynamic parameters showed an endothermic as well as chemical nature through the adsorption process.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.