Abstract

The sorption of contaminant ions existing in residual aqueous solutions onto nano-structured calcium silicate has been studied. The sorbent was prepared by chemical reaction between a soluble solution of sodium silicate and calcium hydroxide. X-ray diffraction analysis showed the amorphous character of the obtained calcium silicate, although patterns associated to wollastonite, CaSiO 3 , and larnyta-syn, Ca 2 SiO 4 were detected. The particle mean size was approximate 0.5 to 1.0 µm having an average BET surface area of 333.0 m2/g and a mean pore diameter variable between 15.8-23.6 nm. The nano-structured calcium silicates were contacted with industrial residual aqueous solutions containing, among others, Cu(II), Zn(II), Cd(II) and the anions PO 4 3-, SO 4 = and CrO 4 =, being copper (II) and phosphate the ions that were most easily and quantitatively adsorbed. The results of equilibrium experiments showed that the Redlich-Peterson adsorption isotherm model explained the experimental results for some metal ions.The experimental kinetics followed a pseudo-second-order kinetics model for Cu(II) and Zn(II) sorption.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.