Abstract

This study aimed to develop an environmentally friendly, inexpensive, and efficient adsorbent for removing methylene blue (MB) dye from wastewater using a three-dimensional porous poly(2-Acrylamido-2-methyl-1-propanesulfonic acid-co-2-Hydroxyethyl Methacrylate), p(AMPS-co-HEMA) composite hydrogel crosslinked with vinyl-functionalized activated carbon (VAC). The surface morphology and chemical structure of the crosslinker were characterized using transmission electron microscopy (TEM), Brunauer-Emmett-Teller (BET) surface area analysis, X-ray spectroscopy (XRD) and Fourier transform-infrared spectroscopy (FT-IR) instruments. The surface morphology, chemical structure and thermal properties of the hydrogel were also characterized using scanning electron microscopy (SEM), FT-IR and thermogravimetric analyzers (TGA). Experimental parameters affecting the adsorption behavior, such as initial dye concentration, time, dosage, pH, and temperature, were systematically investigated. Hydrogel achieved optimal MB removal efficiency (69.53%) at an initial MB concentration of 250 mg/L (1 mg/mL, pH not adjusted) over 24 h. Adsorption kinetics, isotherm, thermodynamic studies, and reusability were investigated. Experimental adsorption isotherm and kinetic data followed the Langmuir model and pseudo-second-order kinetics with a maximum adsorption capacity of 284.90 mg/g hydrogel at 293 K. Thermodynamic findings proved the spontaneity and endothermic behavior of the adsorption process. After 5 adsorption-desorption cycles, the adsorption capacity of the composite hydrogel decreased by only 7.51 mg/g compared to the initial adsorption capacity.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.