Abstract
Adsorption of gases produced by SF6 decomposition (i.e., SO2, H2S, SOF2, SO2F2, and CF4) by aluminum-doped zigzag (8, 0) single-walled carbon nanotubes (Al-SWCNTs) was investigated based on first-principles density functional theory (DFT). Different binding sites were considered to determine the most stable structures. Furthermore, adsorption energy, density of state, band structure, frontier molecular orbital, and population were analyzed to interpret the mechanism of gas adsorption on the surface of Al-SWCNTs. The calculation results predicted that the Al atom acted as an active site to adsorb the SF6 decomposition products in the adsorption process. SO2, H2S, and CF4 molecules were adsorbed on the sidewall of Al-SWCNTs by physisorption, whereas SOF2 and SO2F2 were molecularly chemisorbed. Conductivity of Al-SWCNTs was increased when the gas molecules of SO2, H2S, and SO2F2 were adsorbed. Conversely, SOF2 adsorption slightly decreased the conductivity of the adsorption system. Al-SWCNTs were insensitive to CF4. The different responses in conductivity of Al-SWCNTs for different gas molecule adsorptions present a potential selective and sensitive gas detection sensor.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.