Abstract
We have proposed a new recovery system of hexavalent chromium Cr(VI) that is of great toxicity utilizing condensed-tannin gels derived from a natural polymer with many polyhydroxyphenyl groups. The adsorption mechanism of Cr(VI) to the tannin molecules was clarified. The adsorption mechanism consists of four reaction steps; the esterification of chromate with tannin molecules, the reduction of Cr(VI) to trivalent chromium Cr(III), the formation of carboxyl group by the oxidation of tannin molecules and the ion exchange of the reduced Cr(III) with the carboxyl and hydroxyl groups. It was found in this recovery system that a large amount of proton was consumed accompanied with the reduction of Cr(VI) so that the acidic solution containing Cr(VI) was transferred automatically to neutral one by choosing an appropriate initial pH. The carboxyl group which was created by the oxidation of tannin molecules parallel to the reduction of Cr(VI) to Cr(III) contributed to an increase in the ion-exchange sites of the reduced Cr(III). The maximum adsorption capacity of Cr(VI) reached 287 mg Cr/g dry tannin gel under the conditions of 0.77 water content of tannin gel and the initial pH=2. This adsorption capacity was five to ten times higher than that obtained by the ion exchange between ordinary Cr(III) and tannin molecules for the tannin gels prepared under similar conditions. The system proposed here will provide an important information on a zero-emission-oriented process because it has such advantages as higher adsorption capacity of chromium and lower volume of secondary wastes compared with conventional process.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.