Abstract

Fly ash and soil mixtures with a range of fly ash content from 0 to 100% were used to study the adsorption and desorption of herbicides atrazine, propazine, prometryne, propanil, and molinate in batch experiments. The isotherms shapes according to Giles classification (Giles et al., 1960) were S, L, and H as the substrate changed from sandy clay loam (SCL) to fly ash, depending on the percent of fly ash in the mixture. The adsorption isotherms fit the Freundlich equation x/m = K(f) C(1/)(n)(). The K(f) values increase with the increase of the fly ash content. The mean percent amounts of herbicides, for a range of concentration 1-20 mg L(-)(1), adsorbed on the soil were 21.9% for atrazine, 50.7% for propazine, 29.04% for prometryne, 43.14% for molinate, 31.35% for propachlor, and 46.34% for propanil. Mass balance estimations show that the adsorbed amounts of the herbicides increase along with the fly ash content in the sorbent mixture and reach the 99% in the "pure" fly ash. In contrast, the amounts desorbed with water decrease as the fly ash content increases. The n values ranged from 0.82 to 3.05 indicating that the carbon content of fly ash plays a significant role during the sorption process and an increase of heterogenity of solid substrate. The increase of the amounts desorbed with acetone indicates that the sorption of organic compounds onto fly ash is believed to occur principally via the weak induction forces of London or dispersion forces which are characteristic of the physical adsorption process. The results of this research demonstrate that the fly ash shows a significant capacity for adsorption of organic compounds from aqueous solution.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.