Abstract
Tightly bound extracellular polymeric substances (TB-EPS) play a substantial role on microbial aggregates, which can promote microbial cells to aggregate and adhere onto the carrier in bioreactor. However, the attachment and adsorption of TB-EPS on different surfaces were awaited to be elucidated. In this study, four self-assembled monolayers (SAMs) carrying methyl (CH3-SAM), amino (NH2-SAM), hydroxyl (OH-SAM), and carboxyl (COOH-SAM) terminal groups were prepared to model different surfaces. TB-EPS adsorption on these surfaces under different pH conditions and additional cations were investigated using surface plasmon resonance. The adsorption of TB-EPS dramatically decreased with the decreasing pH values. CH3-SAM surface achieved the maximum adsorption at the same condition. Na+ promoted the TB-EPS adsorbed on COOH-SAM surface. The Ca2+-mediated complexes were attracted by COOH-SAM and repelled by NH2-SAM, respectively. The adsorptions of TB-EPS on the four SAM surfaces were significantly increased by adding Fe3+. These results demonstrated that the TB-EPS adsorption on the organic surfaces were dependent on the pH and cation of solution.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.